Week 2 - Wednesday

COMP 4500



= What did we talk about last time?
= More proof techniques

= Asymptotic orders of growth

= Started stable marriage




Questions?




Assighment 1




Four men are standing in front of a firing-squad

#1 and #3 are wearing black hats

#2 and #4 are wearing white hats

They are all facing the same direction with a wall between #3
and #4

Thus,

= #1sees #2and #3

= #2sees #3

= #3and #4 seenoone

The men are told that two white hats and two black hats are
being worn

The men can go if one man says what color hat he's wearing
No talking is allowed, with the exception of a man announcing
what color hat he's wearing.

Are they set free? If so, how?




Stable Marriage




= All 2n people want to get married

= All of them are willing to marry any of the n members of the
opposite gender

= Each woman has ranked all n men in order of preference

= Each man has ranked all n women in order of preference

= We want to match them up so that the marriages are stable



= Consider two marriages:
= Anna and Bob

= Caitlin and Dan
= This pair of marriages is unstable if

= Anna likes Dan more than Bob and Dan likes Anna more than Caitlin
or

= Caitlin likes Bob more than Dan and Bob likes Caitlin more than Anna
= We want to arrange all n marriages such that none are
unstable



= While there is man m who is free and hasn't proposed to every woman

= Choose any such manm
= Let w be the highest-ranked woman in m's preferences that m hasn't proposed to yet
= If wis free then
(m, w) become engaged
= Else wis engaged to some man called m'
If w prefers m”tom
* m remains free
Else
= (m,w) become engaged

= m' becomes free
= Return the set of engaged pairs



= Once awoman is engaged, she'll stay engaged

= Maybe her engagement will change to a man she likes more, but she
will never become free again

= The sequence of women that a particular man proposes to will
get lower and lower on his preference list



= We want to bound the time that an algorithm takes

= Sometimes that means coming up with some kind of indirect
measurement of the operations

= We can define P(t), the progress at time t, as the set of unique
proposals of m to w on the tt" iteration of the algorithm

= Note that on every iteration, a unique proposal (m, w)
happens, so the size of P(t + 1) is always one more than P(t)



= The algorithm runs at most n? iterations of the While loop.
= Proof:

= No men will propose after they have proposed to all the women.

= There are a maximum of n? ways for any man to propose to any
woman.

= At each iteration, the progress increases.
= Thus, it's impossible for the algorithm to run more than n? iterations.
_



= Proof by contradiction:
= Suppose that mis free but has already proposed to every woman.

= We have already established that a woman can never become
unengaged once she's been proposed to.

= Since m has proposed to all women, they're all engaged.

= But then there would be n women who are engaged to n different
men.

= Since mis one of those n men, he must not be free, which is a
contradiction.



= Proof by contradiction:

= Suppose that there is at least one man m who is unmatched at the
end of the algorithm.

= He must have proposed to every woman or the While loop would not
nave terminated.

= However, this contradicts the previous proof that any free man must
nave a woman he hasn't proposed to.




Proof by contradiction:

Suppose that the matching is not stable.

Thus, there are pairs (m, w) and (m', w') such that m prefers w' and w' prefers m.
It must be the case that m's last proposal was to w.

Case 1: m never proposed to w'

Since m proposed to women in descending order of preference, he must prefer w more than
w', a contradiction.

Case 2: mdid propose to w'
If so, w' preferred some later proposer m" to m.

But for w' to end up with m', m'=m" or m' is someone she preferred even more than m", and
thus more than m, a contradiction.

Since all cases lead to contradictions, the matching must be stable.



Five Representative Problems




= Inthe interval scheduling problem, some resource (a phone, a
motorcycle, a toilet) can only be used by one person at a time.

= People make requests to use the resource for a specific time
interval [s, f].

= The goal is to schedule as many uses as possible.

= There's no preference based on who or when the resource is
used.



= Interval scheduling can be done with a greedy algorithm

= While there are still requests that are not in the compatible set
= Find the request rthat ends earliest
= Add it to the compatible set

= Remove all requests g that overlap with r
= Return the compatible set






The weighted interval scheduling problem extends interval
scheduling by attaching a weight (usually a real number) to each
request

Now the goal is not to maximize the number of requests served
but the total weight

Our greedy approach is worthless, since some high value requests
might be tossed out

We could try all possible subsets of requests, but there are
exponential of those

Dynamic programming will allow us to save parts of optimal
answers and combine them efficiently



= A bipartite graph is one whose nodes can be divided into two
disjoint sets X andY

= There can be edges between set X and setY

= There are no edges inside set X or setY

= A graph is bipartite if and only if it contains no odd cycles



X H' \E’ E‘ \H \E E

Y @0 6 0 0 06




= A perfect matching is when every node in set X and every
node in setY is matched

= |[tis not always possible to have a perfect matching

= We can still try to find a maximum matching in which as
many nodes are matched up as possible

= Our algorithm will use the idea of an augmenting path, which
is useful in many network flow problems

= This technique is neither greedy nor dynamic programming



Independent set is another graph problem

Given an undirected graph, find the largest set of nodes that
are not connected to each other

Doesn't sound too bad, right?

Practical application:

= Nodes represent friends of yours
= An edge between those two nodes means they hate each other

= What's the largest group of friends you could invite to a party if you
don't want any to hate each other?






= Independent set is NP-complete
= That means:

= The best algorithm we know is exponential (try all subsets of
vertices)

= All other NP-complete problems can be turned into it

= Even all polynomial time problems can be turned into it (though it's
not always easy to see how)



= Take your interval scheduling problem and make all the
requests nodes

= |f the nodes overlap, put an edge between them

= Then, run your independent set algorithm

= Magically, you'll get exactly those nodes corresponding to the
largest set of non-overlapping requests



= A little confusing!

= Make a new graph where there's a node corresponding to every
edge from the bipartite graph

= Now, connect every node in the new graph to every other node
(which was an edge) that shared endpoints in the original graph

= Running an independent set algorithm will now pick the largest
set of nodes (which were edges) such that none of the nodes are
connected

= Thus, only edges in the original graph will be selected if they don't
share endpoints



= Imagine that you have a graph where nodes represent locations

= There are edges between locations that are "too close" to both
have coffee shops

= Each node has a value associated with it, giving how much coffee
you can sell

= What if there are two companies that each take turns picking a
location to build their next coffee shop?

= What algorithm should either company follow to guarantee the
most value? Or to guarantee at least a certain amount of value?



= The competitive facility location problem is PSPACE-complete

= Problems that can be solved using only polynomial space and
unbounded time

= |tis believed to be even harder than NP-complete

= Even though coffee chains don't play games like this,
PSPACE-complete problems include generalizations of:
= Almost every board game
= Game theory problems
= Serious Al problems



Three-sentence summary of an efficient
solution to Stable Marriage




Implementing Stable Marriage




= An array is a random access list data structure available in
many programming languages

= An array of length n has the following properties:
= Retrieving the it element in the list takes O(1) time

= Checking to see if an element appears in an unordered array takes
O(n) time

= Checking to see if an element appears in a sorted array takes O(log n)

= Adding or removing elements can take O(n) time to move elements
over or resize the array



= A linked listis a sequential access list data structure available
in most programming languages
= A list has the following properties:

= Retrieving the it" element in the list takes O(i) time

= Checking to see if an element appears may always take O(n) time

= Adding or removing elements from the beginning and end of the
linked list usually takes O(1) time



= While there is man m who is free and hasn't proposed to every woman
= Choose any such manm

= Let w be the highest-ranked woman in m's preferences that m hasn't proposed
to yet

= Ifwis free then

(m, w) become engaged
= Else wis engaged to some man called m'
If wprefersm’tom
* mremains free
Else
* (m,w) become engaged

* m' becomes free
= Return the set of engaged pairs



= Each iteration of the loop, we need to do four things
efficiently:

1.
2.
3.
4.

Find a free man m

Find the highest-ranked woman w that m hasn't proposed to
See if wis currently engaged and, if so, her current partner
For a woman w, decide whether she prefers m or m'



= |f we keep a linked list of free men, we can find a free manin
constant time

= Each man has a list (presumably stored as an array) of his
preferences

= We only need to keep the index of the next woman he should
propose to

= Thus, we can keep all of the indexes for all of these menin a
single array and increment the appropriate index whenever a
man proposes, in constant time



= We can keep a separate array that lists which man each
woman is engaged to

= Most languages provide null or a similar value to represent no
current partner
= Before the algorithm, we can create an n x n array of ranks
called ranking, where ranking[w][m] gives the w's

ranking of m
= With this array, we can look up w's ranking of mand m'in

constant time



= Before, we proved that we needed a maximum of n? iterations
of the While loop to solve the Stable Marriage problem

= We just demonstrated that we can do ©(n?) work before the
loop and then do constant work inside each iteration

= Thus, the total work is ©(n?) + ©(n?), which is ©(n?)



Upcoming




= Common running times
= Worked exercises
= Proofs by induction



= Read section 2.4
= Work on Assignment 1

= Due Friday by midnight



	COMP 4500
	Last time
	Questions?
	Assignment 1
	Logical warmup
	Stable Marriage
	Imagine n men and n women
	Stability
	Gale-Shapley Pseudocode
	Observations
	Progress
	Running time
	If m is free, there is a woman he hasn't proposed to
	Everyone is matched when the algorithm terminates
	The algorithm gives a stable matching
	Five Representative Problems
	Interval scheduling
	Interval scheduling algorithm
	Interval scheduling example
	Weighted interval scheduling
	Bipartite graphs
	Bipartite graph
	Bipartite matching
	Independent set
	Independent set example
	NP-complete
	Solving interval scheduling with independent set
	Solving bipartite matching with independent set
	Competitive facility location
	PSPACE-complete
	Three-sentence summary of an efficient solution to Stable Marriage
	Implementing Stable Marriage
	Arrays
	Linked lists
	Gale-Shapley Pseudocode
	Steps in the loop
	Finding a free man and his next proposal
	Finding a woman's partner and her preferences
	Total running time
	Upcoming
	Next time…
	Reminders

