
Week 2 - Wednesday

 What did we talk about last time?
 More proof techniques
 Asymptotic orders of growth
 Started stable marriage

 Four men are standing in front of a firing-squad
 #1 and #3 are wearing black hats
 #2 and #4 are wearing white hats
 They are all facing the same direction with a wall between #3

and #4
 Thus,
 #1 sees #2 and #3
 #2 sees #3
 #3 and #4 see no one

 The men are told that two white hats and two black hats are
being worn

 The men can go if one man says what color hat he's wearing
 No talking is allowed, with the exception of a man announcing

what color hat he's wearing.
 Are they set free? If so, how?

1

3

2

4

 All 2n people want to get married
 All of them are willing to marry any of the n members of the

opposite gender
 Each woman has ranked all n men in order of preference
 Each man has ranked all n women in order of preference
 We want to match them up so that the marriages are stable

 Consider two marriages:
 Anna and Bob
 Caitlin and Dan

 This pair of marriages is unstable if
 Anna likes Dan more than Bob and Dan likes Anna more than Caitlin

or
 Caitlin likes Bob more than Dan and Bob likes Caitlin more than Anna

 We want to arrange all n marriages such that none are
unstable

 While there is man m who is free and hasn't proposed to every woman
 Choose any such man m
 Let w be the highest-ranked woman in m's preferences that m hasn't proposed to yet
 If w is free then
▪ (m, w) become engaged

 Else w is engaged to some man called m'
▪ If w prefers m’ to m
▪ m remains free

▪ Else
▪ (m,w) become engaged
▪ m' becomes free

 Return the set of engaged pairs

 Once a woman is engaged, she'll stay engaged
 Maybe her engagement will change to a man she likes more, but she

will never become free again
 The sequence of women that a particular man proposes to will

get lower and lower on his preference list

 We want to bound the time that an algorithm takes
 Sometimes that means coming up with some kind of indirect

measurement of the operations
 We can define P(t), the progress at time t, as the set of unique

proposals of m to w on the tth iteration of the algorithm
 Note that on every iteration, a unique proposal (m, w)

happens, so the size of P(t + 1) is always one more than P(t)

 The algorithm runs at most n2 iterations of the While loop.
 Proof:
 No men will propose after they have proposed to all the women.
 There are a maximum of n2 ways for any man to propose to any

woman.
 At each iteration, the progress increases.
 Thus, it's impossible for the algorithm to run more than n2 iterations.
∎

 Proof by contradiction:
 Suppose that m is free but has already proposed to every woman.
 We have already established that a woman can never become

unengaged once she's been proposed to.
 Since m has proposed to all women, they're all engaged.
 But then there would be n women who are engaged to n different

men.
 Since m is one of those n men, he must not be free, which is a

contradiction.
∎

 Proof by contradiction:
 Suppose that there is at least one man m who is unmatched at the

end of the algorithm.
 He must have proposed to every woman or the While loop would not

have terminated.
 However, this contradicts the previous proof that any free man must

have a woman he hasn't proposed to.
∎

 Proof by contradiction:
 Suppose that the matching is not stable.
 Thus, there are pairs (m, w) and (m', w') such that m prefers w' and w' prefers m.
 It must be the case that m's last proposal was to w.
 Case 1: m never proposed to w'

▪ Since m proposed to women in descending order of preference, he must prefer w more than
w', a contradiction.

 Case 2: m did propose to w'
▪ If so, w' preferred some later proposer m'' to m.
▪ But for w' to end up with m', m' = m'' or m' is someone she preferred even more than m'', and

thus more than m, a contradiction.

 Since all cases lead to contradictions, the matching must be stable.
∎

 In the interval scheduling problem, some resource (a phone, a
motorcycle, a toilet) can only be used by one person at a time.

 People make requests to use the resource for a specific time
interval [s, f].

 The goal is to schedule as many uses as possible.
 There's no preference based on who or when the resource is

used.

 Interval scheduling can be done with a greedy algorithm
 While there are still requests that are not in the compatible set
 Find the request r that ends earliest
 Add it to the compatible set
 Remove all requests q that overlap with r

 Return the compatible set

 The weighted interval scheduling problem extends interval
scheduling by attaching a weight (usually a real number) to each
request

 Now the goal is not to maximize the number of requests served
but the total weight

 Our greedy approach is worthless, since some high value requests
might be tossed out

 We could try all possible subsets of requests, but there are
exponential of those

 Dynamic programming will allow us to save parts of optimal
answers and combine them efficiently

 A bipartite graph is one whose nodes can be divided into two
disjoint sets X and Y

 There can be edges between set X and set Y
 There are no edges inside set X or set Y
 A graph is bipartite if and only if it contains no odd cycles

A B C D E F

A B C D E F

X

Y

 A perfect matching is when every node in set X and every
node in set Y is matched

 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as

many nodes are matched up as possible
 Our algorithm will use the idea of an augmenting path, which

is useful in many network flow problems
 This technique is neither greedy nor dynamic programming

 Independent set is another graph problem
 Given an undirected graph, find the largest set of nodes that

are not connected to each other
 Doesn't sound too bad, right?
 Practical application:
 Nodes represent friends of yours
 An edge between those two nodes means they hate each other
 What's the largest group of friends you could invite to a party if you

don't want any to hate each other?

A

H

G

FE

D

C

B

 Independent set is NP-complete
 That means:
 The best algorithm we know is exponential (try all subsets of

vertices)
 All other NP-complete problems can be turned into it
 Even all polynomial time problems can be turned into it (though it's

not always easy to see how)

 Take your interval scheduling problem and make all the
requests nodes

 If the nodes overlap, put an edge between them
 Then, run your independent set algorithm
 Magically, you'll get exactly those nodes corresponding to the

largest set of non-overlapping requests

 A little confusing!
 Make a new graph where there's a node corresponding to every

edge from the bipartite graph
 Now, connect every node in the new graph to every other node

(which was an edge) that shared endpoints in the original graph
 Running an independent set algorithm will now pick the largest

set of nodes (which were edges) such that none of the nodes are
connected

 Thus, only edges in the original graph will be selected if they don't
share endpoints

 Imagine that you have a graph where nodes represent locations
 There are edges between locations that are "too close" to both

have coffee shops
 Each node has a value associated with it, giving how much coffee

you can sell
 What if there are two companies that each take turns picking a

location to build their next coffee shop?
 What algorithm should either company follow to guarantee the

most value? Or to guarantee at least a certain amount of value?

 The competitive facility location problem is PSPACE-complete
 Problems that can be solved using only polynomial space and

unbounded time
 It is believed to be even harder than NP-complete
 Even though coffee chains don't play games like this,

PSPACE-complete problems include generalizations of:
 Almost every board game
 Game theory problems
 Serious AI problems

 An array is a random access list data structure available in
many programming languages

 An array of length n has the following properties:
 Retrieving the ith element in the list takes O(1) time
 Checking to see if an element appears in an unordered array takes

O(n) time
 Checking to see if an element appears in a sorted array takes O(log n)
 Adding or removing elements can take O(n) time to move elements

over or resize the array

 A linked list is a sequential access list data structure available
in most programming languages

 A list has the following properties:
 Retrieving the ith element in the list takes O(i) time
 Checking to see if an element appears may always take O(n) time
 Adding or removing elements from the beginning and end of the

linked list usually takes O(1) time

 While there is man m who is free and hasn't proposed to every woman
 Choose any such man m
 Let w be the highest-ranked woman in m's preferences that m hasn't proposed

to yet
 If w is free then
▪ (m, w) become engaged

 Else w is engaged to some man called m'
▪ If w prefers m’ to m
▪ m remains free

▪ Else
▪ (m,w) become engaged
▪ m' becomes free

 Return the set of engaged pairs

 Each iteration of the loop, we need to do four things
efficiently:
1. Find a free man m
2. Find the highest-ranked woman w that m hasn't proposed to
3. See if w is currently engaged and, if so, her current partner
4. For a woman w, decide whether she prefers m or m'

 If we keep a linked list of free men, we can find a free man in
constant time

 Each man has a list (presumably stored as an array) of his
preferences

 We only need to keep the index of the next woman he should
propose to

 Thus, we can keep all of the indexes for all of these men in a
single array and increment the appropriate index whenever a
man proposes, in constant time

 We can keep a separate array that lists which man each
woman is engaged to
 Most languages provide null or a similar value to represent no

current partner
 Before the algorithm, we can create an n x n array of ranks

called ranking, where ranking[w][m] gives the w's
ranking of m

 With this array, we can look up w's ranking of m and m' in
constant time

 Before, we proved that we needed a maximum of n2 iterations
of the While loop to solve the Stable Marriage problem

 We just demonstrated that we can do Θ(n2) work before the
loop and then do constant work inside each iteration

 Thus, the total work is Θ(n2) + Θ(n2), which is Θ(n2)

 Common running times
 Worked exercises
 Proofs by induction

 Read section 2.4
 Work on Assignment 1
 Due Friday by midnight

	COMP 4500
	Last time
	Questions?
	Assignment 1
	Logical warmup
	Stable Marriage
	Imagine n men and n women
	Stability
	Gale-Shapley Pseudocode
	Observations
	Progress
	Running time
	If m is free, there is a woman he hasn't proposed to
	Everyone is matched when the algorithm terminates
	The algorithm gives a stable matching
	Five Representative Problems
	Interval scheduling
	Interval scheduling algorithm
	Interval scheduling example
	Weighted interval scheduling
	Bipartite graphs
	Bipartite graph
	Bipartite matching
	Independent set
	Independent set example
	NP-complete
	Solving interval scheduling with independent set
	Solving bipartite matching with independent set
	Competitive facility location
	PSPACE-complete
	Three-sentence summary of an efficient solution to Stable Marriage
	Implementing Stable Marriage
	Arrays
	Linked lists
	Gale-Shapley Pseudocode
	Steps in the loop
	Finding a free man and his next proposal
	Finding a woman's partner and her preferences
	Total running time
	Upcoming
	Next time…
	Reminders

