
Week 2 - Wednesday



 What did we talk about last time?
 More proof techniques
 Asymptotic orders of growth
 Started stable marriage







 Four men are standing in front of a firing-squad
 #1 and #3 are wearing black hats 
 #2 and #4 are wearing white hats
 They are all facing the same direction with a wall between #3 

and #4
 Thus, 
 #1 sees #2 and #3
 #2 sees #3
 #3 and #4 see no one

 The men are told that two white hats and two black hats are 
being worn

 The men can go if one man says what color hat he's wearing
 No talking is allowed, with the exception of a man announcing 

what color hat he's wearing.
 Are they set free?  If so, how?
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 All 2n people want to get married
 All of them are willing to marry any of the n members of the 

opposite gender
 Each woman has ranked all n men in order of preference
 Each man has ranked all n women in order of preference
 We want to match them up so that the marriages are stable



 Consider two marriages:
 Anna and Bob
 Caitlin and Dan

 This pair of marriages is unstable if
 Anna likes Dan more than Bob and Dan likes Anna more than Caitlin 

or
 Caitlin likes Bob more than Dan and Bob likes Caitlin more than Anna 

 We want to arrange all n marriages such that none are 
unstable



 While there is man m who is free and hasn't proposed to every woman
 Choose any such man m
 Let w be the highest-ranked woman in m's preferences that m hasn't proposed to yet
 If w is free then
▪ (m, w) become engaged

 Else w is engaged to some man called m'
▪ If w prefers m’ to m
▪ m remains free

▪ Else
▪ (m,w) become engaged
▪ m' becomes free

 Return the set of engaged pairs



 Once a woman is engaged, she'll stay engaged
 Maybe her engagement will change to a man she likes more, but she 

will never become free again
 The sequence of women that a particular man proposes to will 

get lower and lower on his preference list



 We want to bound the time that an algorithm takes
 Sometimes that means coming up with some kind of indirect

measurement of the operations
 We can define P(t), the progress at time t, as the set of unique 

proposals of m to w on the tth iteration of the algorithm
 Note that on every iteration, a unique proposal (m, w) 

happens, so the size of P(t + 1) is always one more than P(t)



 The algorithm runs at most n2 iterations of the While loop.
 Proof:
 No men will propose after they have proposed to all the women.
 There are a maximum of n2 ways for any man to propose to any 

woman.
 At each iteration, the progress increases.
 Thus, it's impossible for the algorithm to run more than n2 iterations.
∎



 Proof by contradiction:
 Suppose that m is free but has already proposed to every woman.
 We have already established that a woman can never become 

unengaged once she's been proposed to.
 Since m has proposed to all women, they're all engaged.
 But then there would be n women who are engaged to n different 

men.
 Since m is one of those n men, he must not be free, which is a 

contradiction.
∎



 Proof by contradiction:
 Suppose that there is at least one man m who is unmatched at the 

end of the algorithm.
 He must have proposed to every woman or the While loop would not 

have terminated.
 However, this contradicts the previous proof that any free man must 

have a woman he hasn't proposed to.
∎



 Proof by contradiction:
 Suppose that the matching is not stable.
 Thus, there are pairs (m, w) and (m', w') such that m prefers w' and w' prefers m.
 It must be the case that m's last proposal was to w.
 Case 1: m never proposed to w'

▪ Since m proposed to women in descending order of preference, he must prefer w more than 
w', a contradiction.

 Case 2: m did propose to w'
▪ If so, w' preferred some later proposer m'' to m.
▪ But for w' to end up with m', m' = m'' or m' is someone she preferred even more than m'', and 

thus more than m, a contradiction.

 Since all cases lead to contradictions, the matching must be stable.
∎





 In the interval scheduling problem, some resource (a phone, a 
motorcycle, a toilet) can only be used by one person at a time.

 People make requests to use the resource for a specific time 
interval [s, f].

 The goal is to schedule as many uses as possible.
 There's no preference based on who or when the resource is 

used.



 Interval scheduling can be done with a greedy algorithm
 While there are still requests that are not in the compatible set
 Find the request r that ends earliest
 Add it to the compatible set
 Remove all requests q that overlap with r

 Return the compatible set





 The weighted interval scheduling problem extends interval 
scheduling by attaching a weight (usually a real number) to each 
request

 Now the goal is not to maximize the number of requests served 
but the total weight

 Our greedy approach is worthless, since some high value requests 
might be tossed out

 We could try all possible subsets of requests, but there are 
exponential of those

 Dynamic programming will allow us to save parts of optimal 
answers and combine them efficiently



 A bipartite graph is one whose nodes can be divided into two 
disjoint sets X and Y

 There can be edges between set X and set Y
 There are no edges inside set X or set Y
 A graph is bipartite if and only if it contains no odd cycles
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 A perfect matching is when every node in set X and every 
node in set Y is matched

 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as 

many nodes are matched up as possible
 Our algorithm will use the idea of an augmenting path, which 

is useful in many network flow problems
 This technique is neither greedy nor dynamic programming



 Independent set is another graph problem
 Given an undirected graph, find the largest set of nodes that 

are not connected to each other
 Doesn't sound too bad, right?
 Practical application:
 Nodes represent friends of yours
 An edge between those two nodes means they hate each other
 What's the largest group of friends you could invite to a party if you 

don't want any to hate each other?
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 Independent set is NP-complete
 That means:
 The best algorithm we know is exponential (try all subsets of 

vertices)
 All other NP-complete problems can be turned into it
 Even all polynomial time problems can be turned into it (though it's 

not always easy to see how)



 Take your interval scheduling problem and make all the 
requests nodes

 If the nodes overlap, put an edge between them
 Then, run your independent set algorithm
 Magically, you'll get exactly those nodes corresponding to the 

largest set of non-overlapping requests



 A little confusing!
 Make a new graph where there's a node corresponding to every 

edge from the bipartite graph
 Now, connect every node in the new graph to every other node 

(which was an edge) that shared endpoints in the original graph
 Running an independent set algorithm will now pick the largest 

set of nodes (which were edges) such that none of the nodes are 
connected

 Thus, only edges in the original graph will be selected if they don't 
share endpoints



 Imagine that you have a graph where nodes represent locations
 There are edges between locations that are "too close" to both 

have coffee shops
 Each node has a value associated with it, giving how much coffee 

you can sell
 What if there are two companies that each take turns picking a 

location to build their next coffee shop?
 What algorithm should either company follow to guarantee the 

most value? Or to guarantee at least a certain amount of value?



 The competitive facility location problem is PSPACE-complete
 Problems that can be solved using only polynomial space and 

unbounded time
 It is believed to be even harder than NP-complete
 Even though coffee chains don't play games like this, 

PSPACE-complete problems include generalizations of:
 Almost every board game
 Game theory problems
 Serious AI problems







 An array is a random access list data structure available in 
many programming languages

 An array of length n has the following properties:
 Retrieving the ith element in the list takes O(1) time
 Checking to see if an element appears in an unordered array takes 

O(n) time
 Checking to see if an element appears in a sorted array takes O(log n)
 Adding or removing elements can take O(n) time to move elements 

over or resize the array



 A linked list is a sequential access list data structure available 
in most programming languages

 A list has the following properties:
 Retrieving the ith element in the list takes O(i) time
 Checking to see if an element appears may always take O(n) time
 Adding or removing elements from the beginning and end of the 

linked list usually takes O(1) time



 While there is man m who is free and hasn't proposed to every woman
 Choose any such man m
 Let w be the highest-ranked woman in m's preferences that m hasn't proposed 

to yet
 If w is free then
▪ (m, w) become engaged

 Else w is engaged to some man called m'
▪ If w prefers m’ to m
▪ m remains free

▪ Else
▪ (m,w) become engaged
▪ m' becomes free

 Return the set of engaged pairs



 Each iteration of the loop, we need to do four things 
efficiently:
1. Find a free man m
2. Find the highest-ranked woman w that m hasn't proposed to
3. See if w is currently engaged and, if so, her current partner
4. For a woman w, decide whether she prefers m or m'



 If we keep a linked list of free men, we can find a free man in 
constant time

 Each man has a list (presumably stored as an array) of his 
preferences

 We only need to keep the index of the next woman he should 
propose to

 Thus, we can keep all of the indexes for all of these men in a 
single array and increment the appropriate index whenever a 
man proposes, in constant time



 We can keep a separate array that lists which man each 
woman is engaged to
 Most languages provide null or a similar value to represent no 

current partner
 Before the algorithm, we can create an n x n array of ranks 

called ranking, where ranking[w][m] gives the w's 
ranking of m

 With this array, we can look up w's ranking of m and m' in 
constant time



 Before, we proved that we needed a maximum of n2 iterations 
of the While loop to solve the Stable Marriage problem

 We just demonstrated that we can do Θ(n2) work before the 
loop and then do constant work inside each iteration

 Thus, the total work is Θ(n2) + Θ(n2), which is Θ(n2)





 Common running times
 Worked exercises
 Proofs by induction



 Read section 2.4
 Work on Assignment 1
 Due Friday by midnight
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